Sök utbildning

Hands-On Introduction to R

Learning Tree International AB, i Stockholm (+5 orter)
Längd
3 dagar
Pris
26 500 SEK exkl. moms
Längd
3 dagar
Pris
26 500 SEK exkl. moms
Få mer information om utbildningen, arrangörerna svarar oftast inom 48h 👍

Beskrivning av: Hands-On Introduction to R

This introductory R programming course provides hands-on experience using R, a programming language for statistical computing, machine learning, and graphics. R is widely used in diverse disciplines to estimate, predict, and display results. Students will learn how to use R to clean, analyse, and graph data in this course.

Introduction to R Delivery Methods

  • In-Person

  • Online

Introduction to R Course Benefits

  • Perform computations in R

  • Load data sets from various sources into R

  • Transform data sets in preparation for analysis

  • Create tidy data using the Tidyverse packages

  • Visualize data with ggplot2

  • Fit models to data

  • Continue learning and face new challenges with after-course one-on-one instructor coaching

Important course information

Prerequisites

  • Experience with another procedural or object-oriented programming language, such as C, C++, Java, VB .NET, or SQL
  • Familiarity with concepts, such as variables, loops, and branches with some experience using a text editor to edit program code

Exam Information

Optional Learning Tree exam available at the end of class

Chapter 1: Introduction to R

  • Introduction to S, S-PLUS, and R
  • Design of R
  • Advantages of R
  • Limitations of R
  • The R GUI
  • The R GUI

Hands-On Exercise 1.1

  • The RStudio Interface
  • The RStudio Interface
  • RStudio Demo
  • Setting Up a Custom CRAN Mirror
  • Changing RStudio Options
  • Naming Conventions, R Commands and Variables
  • Basic Data Types
  • Creating and Removing Variables
  • Numbers and Character Types
  • Functions and Packages
  • Common Mathematical Functions
  • Common Statistical Functions
  • Common Probability Functions
  • The tidyverse Family of Packages
  • Installing tidyverse
  • Character Processing Functions in the stringr Package
  • Complex Character Manipulation Functions
  • Complex Character Manipulation Functions II
  • Complex Character Manipulation Functions III
  • Miscellaneous Functions
  • The Pipe Operator
  • Pipe Operator Example
  • Performing Calculations
  • Executing Code in R Script File
  • Executing Code in R Script File

Hands-On Exercise 1.1

  • Introducing the Tidyverse
  • Data Input
  • Reading From a File
  • Reading and Displaying a File
  • Structure of the Data
  • Reading and Writing to Excel File
  • Reading From a Database Using the RODBC Package
  • Reading From a Database Using the dbplyr Package
  • Saving Data From R to Disk

Hands-On Exercise 1.2

Chapter 2: Aggregate Data Types and Computation

  • Data Structures
  • Numeric Vectors
  • Vector Arithmetic
  • Vector Arithmetic
  • Generating Sequences
  • Repeating with the rep() function
  • Logical Vectors
  • Boolean Operations
  • Missing Values
  • Character Vectors
  • The paste() function
  • Selecting and Modifying Elements of a Vector
  • Selecting and Modifying Elements of a Vector
  • Selecting and Modifying Elements of a Vector
  • Getting Information about R Objects
  • Examining a Vector
  • Mixing Types in a Vector
  • Factor Types
  • Factor Types
  • Conceptual Framework for Factors
  • Factors for Numerical Data
  • The forcats Package
  • Using fct_infreq()
  • Using fct_lump()
  • Lists
  • Naming List Elements
  • Apply Functions to Lists
  • Data Frames
  • The Tibble
  • Creating a Tibble From Vectors
  • Column Names That Are Non-syntactic
  • Creating a Tibble Using tribble()
  • Tibbles in Action
  • Matrices
  • Creating Matrices
  • Accessing Elements of a Matrix
  • Matrix Computations
  • Transpose and Matrix Multiplication
  • Querying a Data Set
  • Variable Exclusion I
  • Variable Exclusion II
  • Variable Exclusion III
  • Querying Columns From a Tibble
  • Querying Rows From a Tibble
  • Exploratory Data Analysis
  • The summarize() Function of dplyr
  • Working With summarize()
  • Using filter()
  • summary() Function

Hands-On Exercise 2.1

  • Advanced Summary Options
  • Aggregate Examples I
  • Aggregate Examples II
  • Aggregate Examples III
  • Aggregate Examples IV
  • Data Preparation: Data Frame Manipulation—bind_rows()
  • Data Preparation: Data Frame Manipulation—bind_cols()

Hands-On Exercise 2.2

Chapter 3: Data Transformation

  • Cleaning and Transforming the Data
  • Centring and Rescaling
  • Centring and Rescaling II
  • Normalizing
  • Missing Values
  • Missing Values
  • Dropping Rows with Missing Entries
  • Imputing Missing Values
  • Binning
  • Additional Recoding Options
  • Multilevel Recoding
  • The Function cut() in Action
  • General Approach for Multilevel Variable Recoding I
  • General Approach for Multilevel Variable Recoding II
  • Checking for Duplicates and Formatting Dates
  • Reordering a Data Set
  • Reordering Examples I
  • Reordering Examples II
  • Reordering Examples III
  • Sorting, Ranking, and Ordering Data
  • Joining Datasets
  • Inner Joins
  • Left Joins
  • Right Joins
  • Getting a Subset of Data
  • Another Example of Subset Function
  • Sampling

Hands-On Exercise 3.1

Chapter 4: Visualizing Data

  • Base Graphics
  • Exploring Data Visualization
  • Explore the options in qplot()
  • Weather Data Set
  • Simple Graph Plotting
  • Graph Colouring With Attributes
  • Shape and Size to Graph
  • Box Plots and Violin Plots
  • Histogram
  • Density Plots
  • Graph Labelling
  • Pie Charts
  • Co-relationship in Data
  • Plotting Correlation of Three Variables
  • Correlations for All the Numeric Variables

Hands-On Exercise 4.1

Chapter 5: Fitting Models to Data

  • tidymodel
  • Introduction to Regression
  • When Is Regression Used?
  • Sample Use Cases
  • Dependent and Independent Variables
  • Calculating Regression Equation
  • Multiple Linear Regression
  • Equation for Multiple Linear Regression
  • R’s Built-In Function for Linear Regression
  • Additional Linear Modelling functions
  • Example: Predicting Prestige
  • The Data Set
  • Exploring and Preparing the Data
  • Creating a Training and a Testing Data Set
  • The Model
  • Fitting a Linear Model to the Data
  • Making Predictions From the Model
  • Fitting the Model With Parsnip
  • Interpreting the Model
  • Interpreting the Model
  • Evaluating the Model
  • Evaluating the Model
  • Evaluating the Model
  • Tidying Up the Output

Hands-On Exercise 5.1

Intresseanmälan

Beställ information

Fyll i formuläret för att få mer information om Hands-On Introduction to R, direkt från arrangören. Det är gratis och inte bindande!

reCAPTCHA logo Den här hemsidan är skyddad av reCAPTCHA och Googles Integritetspolicy och Användarvillkor tillämpas.
Learning Tree International AB
Fleminggatan 7
112 26 Stockholm

Learning Tree International

Learning Tree är ett internationellt utbildningsföretag med över 40 års erfarenhet av att leverera utbildning till yrkesverksamma IT-proffs, projektledare, verksamhetsutvecklare och chefer. Vi erbjuder allt från enstaka kurser till globala utbildningsprogram, och vi hjälper våra kunder att införa hållbara processer som fungerar idag och förbereder...

Läs mer om Learning Tree International AB och visa alla utbildningar.

Highlights