Beskrivning av: Leveraging Deep Learning for Natural Language Processing Course
In this Natural Language Processing course , you will learn how to navigate the various text pre-processing techniques and select the best neural network architecture for Natural Language Processing.
Natural Language Processing Course Delivery Methods
-
In-Person
-
Online
Natural Language Processing Course Benefits
-
Understand various pre-processing techniques for deep learning problems
-
Build a vector representation of text using word2vec and GloVe
-
Create a named entity recogniser and parts-of-speech tagger with Apache OpenNLP
-
Build a machine translation model in Keras , a deep learning API
-
Develop a text generation application using Long short-term memory (LSTM)
-
Build a trigger word detection application using an attention model
-
Test your knowledge in the included end-of-course exam
-
Continue learning and face new challenges with after-course one-on-one instructor coaching
Natural Language Processing Course Outline
Module 1: Introduction to Natural Language Processing
In this module, you will learn about:
- The basics of Natural Language Processing and its applications
- Popular text pre-processing techniques
- Word2vec and Glove word embeddings Sentiment classification
Module 2: Applications of Natural Language Processing
In this module, you will learn about:
- Named Entity Recognition and how to develop it using popular libraries
- Parts of Speech Tagging
Module 3: Introduction to Neural Networks
In this module, you will learn about:
- Basics of Gradient descent and backpropagation.
- Fundamentals of Deep Learning, Keras and deploying a Model-as-a-Service (MaaS)
Module 4: Foundations of Convolutional Neural Networks (CNN)
- In this module, you will learn about CNN architecture, application areas, and implementation using Keras.
Module 5: Recurrent Neural Networks (RNN)
- In this module, you will learn about RNN architecture, application areas, vanishing gradients, and implementation using Keras.
Module 6: Gated Recurrent Units (GRU)
- In this module, you will learn about GRU architecture, application areas, and implementation using Keras.
Module 7: Long Short-Term Memory (LSTM)
- In this module, you will learn about LSTM architecture, application areas, and implementation using Keras.
Module 8: State of the Art in Natural Language Processing
In this module, you will learn how to:
- Perform Attention Model and Beam search
- Use End to End models for speech processing
- Use Dynamic Neural Networks to answer questions
Module 9: A Practical NLP Project Workflow in an Organisation
In this module, you will learn how to:
- Acquire data using free datasets and crowdsourcing
- Use cloud infrastructure, such as the Google collab notebook, to train deep learning NLP models
- Write a Flask framework server Rest API to deploy a model
- Deploy the web service on cloud infrastructures such as Amazon Elastic Compute Cloud (Amazon EC2) or Docker Cloud
- Leverage the promising techniques in NLP , such as Bidirectional Encoder Representations from Transformers (BERT)
Intresseanmälan
Learning Tree International
Learning Tree är ett internationellt utbildningsföretag med över 40 års erfarenhet av att leverera utbildning till yrkesverksamma IT-proffs, projektledare, verksamhetsutvecklare och chefer. Vi erbjuder allt från enstaka kurser till globala utbildningsprogram, och vi hjälper våra kunder att införa hållbara processer som fungerar idag och förbereder...
Läs mer om Learning Tree International AB och visa alla utbildningar.